Copied to
clipboard

?

G = C3292- (1+4)order 288 = 25·32

2nd semidirect product of C32 and 2- (1+4) acting via 2- (1+4)/C4○D4=C2

metabelian, supersoluble, monomial

Aliases: C3292- (1+4), C62.155C23, C35(Q8○D12), (C3×D4).45D6, (C3×Q8).70D6, (C2×C12).173D6, C6.66(S3×C23), (C3×C6).65C24, C12.59D614C2, C12.D610C2, (C6×C12).172C22, C12.117(C22×S3), (C3×C12).159C23, C3⋊Dic3.53C23, C327D4.3C22, C12⋊S3.35C22, (D4×C32).31C22, (Q8×C32).34C22, C324Q8.37C22, (C3×C4○D4)⋊9S3, (Q8×C3⋊S3)⋊10C2, C4○D46(C3⋊S3), D4.10(C2×C3⋊S3), Q8.16(C2×C3⋊S3), C4.34(C22×C3⋊S3), C2.14(C23×C3⋊S3), (C32×C4○D4)⋊10C2, (C4×C3⋊S3).49C22, (C2×C3⋊S3).57C23, (C2×C6).19(C22×S3), (C2×C324Q8)⋊23C2, C22.4(C22×C3⋊S3), (C2×C3⋊Dic3).106C22, (C2×C4).24(C2×C3⋊S3), SmallGroup(288,1015)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3292- (1+4)
C1C3C32C3×C6C2×C3⋊S3C4×C3⋊S3Q8×C3⋊S3 — C3292- (1+4)
C32C3×C6 — C3292- (1+4)

Subgroups: 1348 in 438 conjugacy classes, 153 normal (12 characteristic)
C1, C2, C2 [×5], C3 [×4], C4, C4 [×3], C4 [×6], C22 [×3], C22 [×2], S3 [×8], C6 [×4], C6 [×12], C2×C4 [×3], C2×C4 [×12], D4 [×3], D4 [×7], Q8, Q8 [×9], C32, Dic3 [×24], C12 [×16], D6 [×8], C2×C6 [×12], C2×Q8 [×5], C4○D4, C4○D4 [×9], C3⋊S3 [×2], C3×C6, C3×C6 [×3], Dic6 [×36], C4×S3 [×24], D12 [×4], C2×Dic3 [×24], C3⋊D4 [×24], C2×C12 [×12], C3×D4 [×12], C3×Q8 [×4], 2- (1+4), C3⋊Dic3 [×6], C3×C12, C3×C12 [×3], C2×C3⋊S3 [×2], C62 [×3], C2×Dic6 [×12], C4○D12 [×12], D42S3 [×24], S3×Q8 [×8], C3×C4○D4 [×4], C324Q8 [×9], C4×C3⋊S3 [×6], C12⋊S3, C2×C3⋊Dic3 [×6], C327D4 [×6], C6×C12 [×3], D4×C32 [×3], Q8×C32, Q8○D12 [×4], C2×C324Q8 [×3], C12.59D6 [×3], C12.D6 [×6], Q8×C3⋊S3 [×2], C32×C4○D4, C3292- (1+4)

Quotients:
C1, C2 [×15], C22 [×35], S3 [×4], C23 [×15], D6 [×28], C24, C3⋊S3, C22×S3 [×28], 2- (1+4), C2×C3⋊S3 [×7], S3×C23 [×4], C22×C3⋊S3 [×7], Q8○D12 [×4], C23×C3⋊S3, C3292- (1+4)

Generators and relations
 G = < a,b,c,d,e,f | a3=b3=c4=d2=1, e2=f2=c2, ab=ba, cac-1=eae-1=a-1, ad=da, af=fa, cbc-1=ebe-1=b-1, bd=db, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef-1=c2e >

Smallest permutation representation
On 144 points
Generators in S144
(1 73 94)(2 95 74)(3 75 96)(4 93 76)(5 71 136)(6 133 72)(7 69 134)(8 135 70)(9 14 40)(10 37 15)(11 16 38)(12 39 13)(17 98 41)(18 42 99)(19 100 43)(20 44 97)(21 81 65)(22 66 82)(23 83 67)(24 68 84)(25 121 130)(26 131 122)(27 123 132)(28 129 124)(29 119 59)(30 60 120)(31 117 57)(32 58 118)(33 54 125)(34 126 55)(35 56 127)(36 128 53)(45 64 52)(46 49 61)(47 62 50)(48 51 63)(77 113 85)(78 86 114)(79 115 87)(80 88 116)(89 144 102)(90 103 141)(91 142 104)(92 101 143)(105 111 137)(106 138 112)(107 109 139)(108 140 110)
(1 123 34)(2 35 124)(3 121 36)(4 33 122)(5 48 109)(6 110 45)(7 46 111)(8 112 47)(9 42 103)(10 104 43)(11 44 101)(12 102 41)(13 144 98)(14 99 141)(15 142 100)(16 97 143)(17 39 89)(18 90 40)(19 37 91)(20 92 38)(21 115 60)(22 57 116)(23 113 58)(24 59 114)(25 53 96)(26 93 54)(27 55 94)(28 95 56)(29 78 68)(30 65 79)(31 80 66)(32 67 77)(49 137 69)(50 70 138)(51 139 71)(52 72 140)(61 105 134)(62 135 106)(63 107 136)(64 133 108)(73 132 126)(74 127 129)(75 130 128)(76 125 131)(81 87 120)(82 117 88)(83 85 118)(84 119 86)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 4)(2 3)(5 140)(6 139)(7 138)(8 137)(9 12)(10 11)(13 40)(14 39)(15 38)(16 37)(17 141)(18 144)(19 143)(20 142)(21 86)(22 85)(23 88)(24 87)(25 127)(26 126)(27 125)(28 128)(29 30)(31 32)(33 123)(34 122)(35 121)(36 124)(41 103)(42 102)(43 101)(44 104)(45 51)(46 50)(47 49)(48 52)(53 129)(54 132)(55 131)(56 130)(57 118)(58 117)(59 120)(60 119)(61 62)(63 64)(65 78)(66 77)(67 80)(68 79)(69 112)(70 111)(71 110)(72 109)(73 93)(74 96)(75 95)(76 94)(81 114)(82 113)(83 116)(84 115)(89 99)(90 98)(91 97)(92 100)(105 135)(106 134)(107 133)(108 136)
(1 11 3 9)(2 12 4 10)(5 114 7 116)(6 115 8 113)(13 93 15 95)(14 94 16 96)(17 125 19 127)(18 126 20 128)(21 112 23 110)(22 109 24 111)(25 141 27 143)(26 142 28 144)(29 61 31 63)(30 62 32 64)(33 43 35 41)(34 44 36 42)(37 74 39 76)(38 75 40 73)(45 60 47 58)(46 57 48 59)(49 117 51 119)(50 118 52 120)(53 99 55 97)(54 100 56 98)(65 106 67 108)(66 107 68 105)(69 88 71 86)(70 85 72 87)(77 133 79 135)(78 134 80 136)(81 138 83 140)(82 139 84 137)(89 131 91 129)(90 132 92 130)(101 121 103 123)(102 122 104 124)
(1 32 3 30)(2 29 4 31)(5 19 7 17)(6 20 8 18)(9 64 11 62)(10 61 12 63)(13 51 15 49)(14 52 16 50)(21 132 23 130)(22 129 24 131)(25 81 27 83)(26 82 28 84)(33 80 35 78)(34 77 36 79)(37 46 39 48)(38 47 40 45)(41 136 43 134)(42 133 44 135)(53 87 55 85)(54 88 56 86)(57 74 59 76)(58 75 60 73)(65 123 67 121)(66 124 68 122)(69 98 71 100)(70 99 72 97)(89 109 91 111)(90 110 92 112)(93 117 95 119)(94 118 96 120)(101 106 103 108)(102 107 104 105)(113 128 115 126)(114 125 116 127)(137 144 139 142)(138 141 140 143)

G:=sub<Sym(144)| (1,73,94)(2,95,74)(3,75,96)(4,93,76)(5,71,136)(6,133,72)(7,69,134)(8,135,70)(9,14,40)(10,37,15)(11,16,38)(12,39,13)(17,98,41)(18,42,99)(19,100,43)(20,44,97)(21,81,65)(22,66,82)(23,83,67)(24,68,84)(25,121,130)(26,131,122)(27,123,132)(28,129,124)(29,119,59)(30,60,120)(31,117,57)(32,58,118)(33,54,125)(34,126,55)(35,56,127)(36,128,53)(45,64,52)(46,49,61)(47,62,50)(48,51,63)(77,113,85)(78,86,114)(79,115,87)(80,88,116)(89,144,102)(90,103,141)(91,142,104)(92,101,143)(105,111,137)(106,138,112)(107,109,139)(108,140,110), (1,123,34)(2,35,124)(3,121,36)(4,33,122)(5,48,109)(6,110,45)(7,46,111)(8,112,47)(9,42,103)(10,104,43)(11,44,101)(12,102,41)(13,144,98)(14,99,141)(15,142,100)(16,97,143)(17,39,89)(18,90,40)(19,37,91)(20,92,38)(21,115,60)(22,57,116)(23,113,58)(24,59,114)(25,53,96)(26,93,54)(27,55,94)(28,95,56)(29,78,68)(30,65,79)(31,80,66)(32,67,77)(49,137,69)(50,70,138)(51,139,71)(52,72,140)(61,105,134)(62,135,106)(63,107,136)(64,133,108)(73,132,126)(74,127,129)(75,130,128)(76,125,131)(81,87,120)(82,117,88)(83,85,118)(84,119,86), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,4)(2,3)(5,140)(6,139)(7,138)(8,137)(9,12)(10,11)(13,40)(14,39)(15,38)(16,37)(17,141)(18,144)(19,143)(20,142)(21,86)(22,85)(23,88)(24,87)(25,127)(26,126)(27,125)(28,128)(29,30)(31,32)(33,123)(34,122)(35,121)(36,124)(41,103)(42,102)(43,101)(44,104)(45,51)(46,50)(47,49)(48,52)(53,129)(54,132)(55,131)(56,130)(57,118)(58,117)(59,120)(60,119)(61,62)(63,64)(65,78)(66,77)(67,80)(68,79)(69,112)(70,111)(71,110)(72,109)(73,93)(74,96)(75,95)(76,94)(81,114)(82,113)(83,116)(84,115)(89,99)(90,98)(91,97)(92,100)(105,135)(106,134)(107,133)(108,136), (1,11,3,9)(2,12,4,10)(5,114,7,116)(6,115,8,113)(13,93,15,95)(14,94,16,96)(17,125,19,127)(18,126,20,128)(21,112,23,110)(22,109,24,111)(25,141,27,143)(26,142,28,144)(29,61,31,63)(30,62,32,64)(33,43,35,41)(34,44,36,42)(37,74,39,76)(38,75,40,73)(45,60,47,58)(46,57,48,59)(49,117,51,119)(50,118,52,120)(53,99,55,97)(54,100,56,98)(65,106,67,108)(66,107,68,105)(69,88,71,86)(70,85,72,87)(77,133,79,135)(78,134,80,136)(81,138,83,140)(82,139,84,137)(89,131,91,129)(90,132,92,130)(101,121,103,123)(102,122,104,124), (1,32,3,30)(2,29,4,31)(5,19,7,17)(6,20,8,18)(9,64,11,62)(10,61,12,63)(13,51,15,49)(14,52,16,50)(21,132,23,130)(22,129,24,131)(25,81,27,83)(26,82,28,84)(33,80,35,78)(34,77,36,79)(37,46,39,48)(38,47,40,45)(41,136,43,134)(42,133,44,135)(53,87,55,85)(54,88,56,86)(57,74,59,76)(58,75,60,73)(65,123,67,121)(66,124,68,122)(69,98,71,100)(70,99,72,97)(89,109,91,111)(90,110,92,112)(93,117,95,119)(94,118,96,120)(101,106,103,108)(102,107,104,105)(113,128,115,126)(114,125,116,127)(137,144,139,142)(138,141,140,143)>;

G:=Group( (1,73,94)(2,95,74)(3,75,96)(4,93,76)(5,71,136)(6,133,72)(7,69,134)(8,135,70)(9,14,40)(10,37,15)(11,16,38)(12,39,13)(17,98,41)(18,42,99)(19,100,43)(20,44,97)(21,81,65)(22,66,82)(23,83,67)(24,68,84)(25,121,130)(26,131,122)(27,123,132)(28,129,124)(29,119,59)(30,60,120)(31,117,57)(32,58,118)(33,54,125)(34,126,55)(35,56,127)(36,128,53)(45,64,52)(46,49,61)(47,62,50)(48,51,63)(77,113,85)(78,86,114)(79,115,87)(80,88,116)(89,144,102)(90,103,141)(91,142,104)(92,101,143)(105,111,137)(106,138,112)(107,109,139)(108,140,110), (1,123,34)(2,35,124)(3,121,36)(4,33,122)(5,48,109)(6,110,45)(7,46,111)(8,112,47)(9,42,103)(10,104,43)(11,44,101)(12,102,41)(13,144,98)(14,99,141)(15,142,100)(16,97,143)(17,39,89)(18,90,40)(19,37,91)(20,92,38)(21,115,60)(22,57,116)(23,113,58)(24,59,114)(25,53,96)(26,93,54)(27,55,94)(28,95,56)(29,78,68)(30,65,79)(31,80,66)(32,67,77)(49,137,69)(50,70,138)(51,139,71)(52,72,140)(61,105,134)(62,135,106)(63,107,136)(64,133,108)(73,132,126)(74,127,129)(75,130,128)(76,125,131)(81,87,120)(82,117,88)(83,85,118)(84,119,86), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,4)(2,3)(5,140)(6,139)(7,138)(8,137)(9,12)(10,11)(13,40)(14,39)(15,38)(16,37)(17,141)(18,144)(19,143)(20,142)(21,86)(22,85)(23,88)(24,87)(25,127)(26,126)(27,125)(28,128)(29,30)(31,32)(33,123)(34,122)(35,121)(36,124)(41,103)(42,102)(43,101)(44,104)(45,51)(46,50)(47,49)(48,52)(53,129)(54,132)(55,131)(56,130)(57,118)(58,117)(59,120)(60,119)(61,62)(63,64)(65,78)(66,77)(67,80)(68,79)(69,112)(70,111)(71,110)(72,109)(73,93)(74,96)(75,95)(76,94)(81,114)(82,113)(83,116)(84,115)(89,99)(90,98)(91,97)(92,100)(105,135)(106,134)(107,133)(108,136), (1,11,3,9)(2,12,4,10)(5,114,7,116)(6,115,8,113)(13,93,15,95)(14,94,16,96)(17,125,19,127)(18,126,20,128)(21,112,23,110)(22,109,24,111)(25,141,27,143)(26,142,28,144)(29,61,31,63)(30,62,32,64)(33,43,35,41)(34,44,36,42)(37,74,39,76)(38,75,40,73)(45,60,47,58)(46,57,48,59)(49,117,51,119)(50,118,52,120)(53,99,55,97)(54,100,56,98)(65,106,67,108)(66,107,68,105)(69,88,71,86)(70,85,72,87)(77,133,79,135)(78,134,80,136)(81,138,83,140)(82,139,84,137)(89,131,91,129)(90,132,92,130)(101,121,103,123)(102,122,104,124), (1,32,3,30)(2,29,4,31)(5,19,7,17)(6,20,8,18)(9,64,11,62)(10,61,12,63)(13,51,15,49)(14,52,16,50)(21,132,23,130)(22,129,24,131)(25,81,27,83)(26,82,28,84)(33,80,35,78)(34,77,36,79)(37,46,39,48)(38,47,40,45)(41,136,43,134)(42,133,44,135)(53,87,55,85)(54,88,56,86)(57,74,59,76)(58,75,60,73)(65,123,67,121)(66,124,68,122)(69,98,71,100)(70,99,72,97)(89,109,91,111)(90,110,92,112)(93,117,95,119)(94,118,96,120)(101,106,103,108)(102,107,104,105)(113,128,115,126)(114,125,116,127)(137,144,139,142)(138,141,140,143) );

G=PermutationGroup([(1,73,94),(2,95,74),(3,75,96),(4,93,76),(5,71,136),(6,133,72),(7,69,134),(8,135,70),(9,14,40),(10,37,15),(11,16,38),(12,39,13),(17,98,41),(18,42,99),(19,100,43),(20,44,97),(21,81,65),(22,66,82),(23,83,67),(24,68,84),(25,121,130),(26,131,122),(27,123,132),(28,129,124),(29,119,59),(30,60,120),(31,117,57),(32,58,118),(33,54,125),(34,126,55),(35,56,127),(36,128,53),(45,64,52),(46,49,61),(47,62,50),(48,51,63),(77,113,85),(78,86,114),(79,115,87),(80,88,116),(89,144,102),(90,103,141),(91,142,104),(92,101,143),(105,111,137),(106,138,112),(107,109,139),(108,140,110)], [(1,123,34),(2,35,124),(3,121,36),(4,33,122),(5,48,109),(6,110,45),(7,46,111),(8,112,47),(9,42,103),(10,104,43),(11,44,101),(12,102,41),(13,144,98),(14,99,141),(15,142,100),(16,97,143),(17,39,89),(18,90,40),(19,37,91),(20,92,38),(21,115,60),(22,57,116),(23,113,58),(24,59,114),(25,53,96),(26,93,54),(27,55,94),(28,95,56),(29,78,68),(30,65,79),(31,80,66),(32,67,77),(49,137,69),(50,70,138),(51,139,71),(52,72,140),(61,105,134),(62,135,106),(63,107,136),(64,133,108),(73,132,126),(74,127,129),(75,130,128),(76,125,131),(81,87,120),(82,117,88),(83,85,118),(84,119,86)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,4),(2,3),(5,140),(6,139),(7,138),(8,137),(9,12),(10,11),(13,40),(14,39),(15,38),(16,37),(17,141),(18,144),(19,143),(20,142),(21,86),(22,85),(23,88),(24,87),(25,127),(26,126),(27,125),(28,128),(29,30),(31,32),(33,123),(34,122),(35,121),(36,124),(41,103),(42,102),(43,101),(44,104),(45,51),(46,50),(47,49),(48,52),(53,129),(54,132),(55,131),(56,130),(57,118),(58,117),(59,120),(60,119),(61,62),(63,64),(65,78),(66,77),(67,80),(68,79),(69,112),(70,111),(71,110),(72,109),(73,93),(74,96),(75,95),(76,94),(81,114),(82,113),(83,116),(84,115),(89,99),(90,98),(91,97),(92,100),(105,135),(106,134),(107,133),(108,136)], [(1,11,3,9),(2,12,4,10),(5,114,7,116),(6,115,8,113),(13,93,15,95),(14,94,16,96),(17,125,19,127),(18,126,20,128),(21,112,23,110),(22,109,24,111),(25,141,27,143),(26,142,28,144),(29,61,31,63),(30,62,32,64),(33,43,35,41),(34,44,36,42),(37,74,39,76),(38,75,40,73),(45,60,47,58),(46,57,48,59),(49,117,51,119),(50,118,52,120),(53,99,55,97),(54,100,56,98),(65,106,67,108),(66,107,68,105),(69,88,71,86),(70,85,72,87),(77,133,79,135),(78,134,80,136),(81,138,83,140),(82,139,84,137),(89,131,91,129),(90,132,92,130),(101,121,103,123),(102,122,104,124)], [(1,32,3,30),(2,29,4,31),(5,19,7,17),(6,20,8,18),(9,64,11,62),(10,61,12,63),(13,51,15,49),(14,52,16,50),(21,132,23,130),(22,129,24,131),(25,81,27,83),(26,82,28,84),(33,80,35,78),(34,77,36,79),(37,46,39,48),(38,47,40,45),(41,136,43,134),(42,133,44,135),(53,87,55,85),(54,88,56,86),(57,74,59,76),(58,75,60,73),(65,123,67,121),(66,124,68,122),(69,98,71,100),(70,99,72,97),(89,109,91,111),(90,110,92,112),(93,117,95,119),(94,118,96,120),(101,106,103,108),(102,107,104,105),(113,128,115,126),(114,125,116,127),(137,144,139,142),(138,141,140,143)])

Matrix representation G ⊆ GL6(𝔽13)

130000
12110000
0012100
0012000
0000121
0000120
,
100000
010000
0012100
0012000
0000121
0000120
,
100000
12120000
0010101111
007392
009933
0054610
,
100000
010000
00106114
007392
009837
0054610
,
1200000
110000
00112112
0001202
00112121
0001201
,
1200000
0120000
0012080
0001208
003010
000301

G:=sub<GL(6,GF(13))| [1,12,0,0,0,0,3,11,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,10,7,9,5,0,0,10,3,9,4,0,0,11,9,3,6,0,0,11,2,3,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,7,9,5,0,0,6,3,8,4,0,0,11,9,3,6,0,0,4,2,7,10],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,12,12,12,12,0,0,11,0,12,0,0,0,2,2,1,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,3,0,0,0,0,12,0,3,0,0,8,0,1,0,0,0,0,8,0,1] >;

57 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C3D4A4B4C4D4E···4J6A6B6C6D6E···6P12A···12H12I···12T
order1222222333344444···466666···612···1212···12
size1122218182222222218···1822224···42···24···4

57 irreducible representations

dim111111222244
type++++++++++--
imageC1C2C2C2C2C2S3D6D6D62- (1+4)Q8○D12
kernelC3292- (1+4)C2×C324Q8C12.59D6C12.D6Q8×C3⋊S3C32×C4○D4C3×C4○D4C2×C12C3×D4C3×Q8C32C3
# reps13362141212418

In GAP, Magma, Sage, TeX

C_3^2\rtimes_92_-^{(1+4)}
% in TeX

G:=Group("C3^2:9ES-(2,2)");
// GroupNames label

G:=SmallGroup(288,1015);
// by ID

G=gap.SmallGroup(288,1015);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,219,100,675,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=d^2=1,e^2=f^2=c^2,a*b=b*a,c*a*c^-1=e*a*e^-1=a^-1,a*d=d*a,a*f=f*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c^2*e>;
// generators/relations

׿
×
𝔽